MATH 2028 - Partition of unity

GOAL : Introduce a useful "localization" tool

Recall that if $f: R \rightarrow iR$ is integrable on a rectangle $R \subseteq \mathbb{R}^n$ s.t. then $\int fdv = \int fdv + \int fdv$

To allow more general sub-division of a bdd domain $\Omega \subseteq \mathbb{R}^n$, it is indeed more effective to decompose the function f as

 $f = f_1 + \dots + f_N$

s.t. each fi is "supported" in a smaller sub-domain of SL. This can be achieved using a tool called "Partition of unity".

Convention: In what follows, we use $\Omega \subseteq \mathbb{R}^n$ to denote a bold open subset whose boundary $\partial \Omega$ has measure zero.

We first establish a fact that will be used in the proof of the theorem above.

FACT: Let $A \subseteq i\mathbb{R}^n$ be an open set and $C \subseteq A$ be a compact subset. Then, $\exists C^{\infty}$ function \mathscr{G} defined on $i\mathbb{R}^n$ s.t.

- · 430 and 4(x)>0 AxeC
- · spt 4 5 A

Proof of Theorem:

• Case I: $\mathcal{L} = \{\mathcal{U}_i\}_{i=1}^N$ is a finite cover of $\overline{\Omega}$ Claim 1: \exists cpt C; \subseteq U; st. $\bigcup_{i=1}^{i}$ int(C;) $\supseteq \overline{\Omega}$ Proof: Let $B_1 = \overline{\Omega} \setminus \bigcup_{i=1}^{N} U_i$ which is a cpt subset of the open set U. Fix another $Cpt C_i \subseteq U_i$ s.t. $B_i \subseteq int(C_i)$. Next, take $B_2 = \overline{\Omega} \setminus (int(c_i) \cup \bigcup_{i=1}^{N} u_i)$ which is a cpt subset of Uz. Fix another $Cpt C_2 \subseteq U_2$ s.t. $B_2 \subseteq int(C_2)$. Define inductively to obtain C1,..., CN. By FACT, $\exists C^{\infty}$ function $\Psi := \mathbb{R}^n \to \mathbb{R}$ s.t. · 4; 30 and 4; >0 on Ci spt Ψ; ⊆ Ui Note that $\sum_{i=1}^{N} \Psi_i > 0$ on $\bigcup_{i=1}^{N} \operatorname{int}(C_i) \ge \overline{\Omega}$. If we take a C^{∞} $f: \bigcup_{i=1}^{\infty} int(C_i) \rightarrow [0,1]$ with cpt support and f = 1 on $\overline{\Omega}$. (Pf: Exercise)

This proves Case I.

• Case Π : $\mathcal{U} = \{\mathcal{U}_i\}_{i \in I}$ is an open cover of Π . Take $\Omega_{\mathbb{R}} := \{x \in \Omega \mid dist(x, \partial\Omega) \ge \mathbb{R}^{-1}\}$.

Note that: $\Omega = \bigcup_{k=1}^{\infty} \Omega_{k}$ $\Omega_{k} \in \text{int } \Omega_{k+1}$ $\Omega_{k} \in \text{IN}$ For each kGN, define

 $\mathcal{U}_{\mathbf{k}} := \left\{ \mathcal{U} \cap \left(\operatorname{int} \Omega_{\mathbf{k}+1} \setminus \Omega_{\mathbf{k}-2} \right) \middle| \mathcal{U} \in \mathcal{U} \right\}$

which is an open cover of the cpt set $\Omega_k \setminus \inf \Omega_{k-1}$ Pass to a finite subcover. We can apply Case I to obtain a partition of unity $\Phi_k = \int \Psi_i^h \int_{i \in I_k}$

Define

$$\sigma(x) := \sum_{k=1}^{\infty} \sum_{i \in I_{k}} \varphi_{i}^{k}(x)$$

which is a finite sum for each $\times \in \Omega$.

THEN, $\left\{\frac{\varphi_{i}^{k}}{\sigma}\right\}_{i \in I_{k}, k \in \mathbb{N}}$ is the desired partition of unity.

Remark: Let $K \subseteq \Omega$ be a cpt subset. Then \exists at most finitely many $\alpha \in \mathcal{A}$ sit. $\mathcal{P}_{\alpha}(x) \equiv 0$. on K. We now see how a partition of unity can be applied to integration theory by piecing together results obtained "locally".

Theorem: Let $\Omega \subseteq \mathbb{R}^n$ be a bold open subset with measure zero $\partial \Omega$, and $\mathcal{U} = \{\mathcal{U}_i\}_{i \in \mathbb{I}}$ is a collection of open sets s.t. $\Omega = \bigcup_{i \in \mathbb{I}} \mathcal{U}_i$. Suppose $\{\mathcal{V}_{\alpha}\}_{\alpha \in \mathcal{A}}$ is a C^∞ partition of unity for \mathcal{U} with compact support.

If $f: \Omega \rightarrow \mathbb{R}$ is a bold function which is cts except on a set of measure zero, then

$$\int f dv = \sum_{d \in \mathcal{A}} \int \varphi_{d} \cdot f dv$$

Remark : The sum on the R.H.S. is a countably infinite sum by the previous remark. It is indeed an infinite series which is "absolutely convergent" (c.f. MATH 2068). Proof: Let $\varepsilon > 0$. We can choose a cpt $K \subseteq \Omega$ s.t. ∂K has measure zero and (Ex: Prove this!) $Vol(\Omega \setminus K) < \varepsilon$.

By the remark before the theorem, I at most finitely many $\varphi_1, ..., \varphi_N$ which does Not vanish identically on K. On the other hand, by assumption I M>O sit $|f(x)| \leq M \forall x \in \Omega$.

Then, we have

$$\leq \int_{\Omega} \int_{\Omega} \int_{\Omega} \int_{\Omega} \int_{\Omega} \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{1}{2} \int_{\Omega} \frac{1}$$

 $\leq M \int 1 dV = M Vol(\Omega \setminus K) < M E$ $\Omega \setminus K$

Let E > 0 gives our desired result.