MATH 2028 - Partition of unity

GOAL: Introduce a useful "localization" tool

Recall that if $f: R \rightarrow \mathbb{R}$ is integrable on a rectangle $R \subseteq \mathbb{R}^{n}$ s.t.
then

$$
\int_{R} f d v=\int_{R_{1}} f d v+\int_{R_{2}} f d v
$$

To allow more general sub-division of a bod domain $\Omega \subseteq \mathbb{R}^{n}$, it is indeed more effective to decompose the function f as

$$
f=f_{1}+\cdots+f_{N}
$$

St. each f_{i} is "supported" in a smaller sub-domain of Ω. This can be achieved using a tool called "Partition of unity".

Convention: In what follows, we use $\Omega \subseteq \mathbb{R}^{n}$ to denote a bod open subset whose bounding $\partial \Omega$ has measure zero.

Theorem (Partition of Unity)
For any collection $C l=\left\{U_{i}\right\}_{i \in I}$ of open subsets u_{i} st. $\Omega \subseteq \bigcup_{i \in I} u_{i}$. there exist a collection of C^{∞} functions $\left\{\varphi_{\alpha}\right\}_{\alpha \in A}$ on \mathbb{R}^{n} s.t.
(1) $\forall \alpha \in \mathcal{A}, 0 \leqslant \varphi_{\alpha} \leqslant 1$ and $\operatorname{spt} \varphi_{\alpha}$ is compact
(2) $\forall x \in \Omega, \exists$ open set V_{x} containing x st. $\operatorname{spt} \varphi_{\alpha} \cap V_{x}=\phi$ except for finitely many $\alpha \in \mathcal{A}$. Moreover.

$$
\sum_{\alpha \in \mathcal{A}} \varphi_{\alpha}(x)=1 \quad \forall x \in \Omega
$$

(3) $\forall \alpha \in \mathcal{A}, \exists i \in I$ st. $\operatorname{spt} \varphi_{\alpha} \subseteq U_{i}$

Defy: Such $\left\{\varphi_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is called a C^{∞} partition of unity for $l l$ with compact support.
Recall: The support of $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
\operatorname{spt} \varphi:=\overline{\left\{x \in \mathbb{R}^{4} \mid \varphi(x) \neq 0\right\}}
$$

We first establish a fact that will be used in the proof of the theorem above.

FACT: Let $A \subseteq \mathbb{R}^{n}$ be an open set and $C \subseteq A$ be a compact subset. Then. $\exists C^{\infty}$ function φ defined on \mathbb{R}^{n} sit.

- $\varphi \geqslant 0$ and $\varphi(x)>0 \quad \forall x \in C$
- opt $\varphi \subseteq A$

Idea of Proof:
$n=1: \exists c^{\infty} f: \mathbb{R} \rightarrow \mathbb{R}$ s.t.

- $f>0$ on $(-1,1)$
- $f=0$ on $\operatorname{R} \backslash(-1.1)$

$$
f(x)= \begin{cases}e^{-(x-1)^{-2}} \cdot e^{-(x+1)^{-2}}, x \in(-1,0) \\ 0 & \text { elsewhere }\end{cases}
$$

Define a C^{∞} function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
g\left(x_{1}, \ldots, x_{n}\right)=f\left(\frac{x_{1}-a_{1}}{\varepsilon}\right) f\left(\frac{x_{2}-a_{2}}{\varepsilon}\right) \ldots f\left(\frac{x_{n}-a_{n}}{\varepsilon}\right)
$$

THEN. $g>0$ inside the cube of sides 2ε centered at $\left(a_{1}, \ldots, a_{n}\right)$ and $g \equiv 0$ outside the cube.

Finally, cover the compact set C be finitely many cubes contained in A.

Proof of Theorem:

- Case I: $C l=\left\{u_{i}\right\}_{i=1}^{N}$ is a finite cover of $\bar{\Omega}$

Claim 1: $\exists \mathrm{cpt} c_{i} \subseteq u_{i}$ st. $\bigcup_{i=1}^{N} \operatorname{int}\left(c_{i}\right) \supseteq \bar{\Omega}$
Proof: Let $B_{1}=\bar{\Omega} \backslash \bigcup_{i=2}^{N} u_{i}$ which is a cpt subset of the open set U_{1}. Fix another opt $C_{1} \subseteq U_{1}$ s.t. $B_{1} \subseteq \operatorname{int}\left(C_{1}\right)$.
Next, take $B_{2}=\bar{\Omega} \backslash\left(\operatorname{int}\left(c_{1}\right) \cup \bigcup_{i=3}^{N} u_{i}\right)$ which is a opt subset of U_{2}. Fix another opt $C_{2} \subseteq U_{2}$ s.t. $B_{2} \subseteq \operatorname{int}\left(C_{2}\right)$.
Define inductively to obtain C_{1}, \ldots, C_{N}.
By FACT, $\exists C^{\infty}$ function $\psi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ s.t.

- $\Psi_{i} \geqslant 0$ and $\Psi_{i}>0$ on C_{i}
- $\operatorname{spt} \Psi_{i} \subseteq U_{i}$

Note that $\sum_{i=1}^{N} \psi_{i}>0$ on $\bigcup_{i=1}^{N} \operatorname{int}\left(c_{i}\right) \supseteq \bar{\Omega}$.
If we take a $C^{\infty} f: \bigcup_{i=1}^{N} \operatorname{int}\left(C_{i}\right) \rightarrow[0,1]$ with opt support and $f \equiv 1$ on $\bar{\Omega}$. (Pf: Exercise)
and $\varphi_{i}: \bigcup_{i=1}^{N} \operatorname{int}\left(c_{i}\right) \rightarrow[0,1]$ st.

$$
\varphi_{i}(x):=\frac{\psi_{i}(x)}{\underbrace{}_{20} \psi_{1}(x)+\psi_{2}(x)+\cdots+\psi_{N}(x)}
$$

then $\left\{f \cdot \varphi_{i}\right\}_{i=1}^{N}$ is a partition of unity
Check: $0 \leqslant f, \varphi_{i} \leqslant 1 \Rightarrow 0 \leqslant f \cdot \varphi_{i} \leqslant 1$

$$
\begin{aligned}
\text { - } \operatorname{spt}\left(f \cdot \varphi_{i}\right) & =\underbrace{\operatorname{spt} f}_{\text {opt }} \cap \operatorname{spt} \varphi_{i} \text { is cpt } \\
& =\operatorname{spt} f \cap \operatorname{spt} \psi_{i} \subseteq U_{i} \\
-\forall x & \in \bar{\Omega} \cdot \sum_{i=1}^{N} f(x) \varphi_{i}(x)=\sum_{i=1}^{N} \varphi_{i}(x)=1
\end{aligned}
$$

This proves Case I.

- Case II: $U=\left\{U_{i}\right\}_{i \in I}$ is an open cover of Ω.

Take $\Omega_{k}:=\left\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega) \geqslant k^{-1}\right\}$.
Note that:

$$
\begin{aligned}
& \Omega=\bigcup_{k=1}^{\infty} \Omega_{k} \\
& \Omega_{k} \subseteq \operatorname{int} \Omega_{k+1} \\
& c_{p t} \quad \forall k \in \mathbb{N}
\end{aligned}
$$

For each $k \in \mathbb{N}$, define

$$
U_{k}:=\left\{U \cap\left(\operatorname{int} \Omega_{k+1} \backslash \Omega_{k-2}\right) \mid u \in U\right\}
$$

which is an open cover of the cpl set $\Omega_{k} 1$ int $\Omega_{k=1}$ Pass to a finite subcover. we can apply Case I to obtain a partition of unity $\Phi_{k}=\left\{\varphi_{i}^{k}\right\}_{i \in I_{k}}$

Define

$$
\sigma(x)==\sum_{k=1}^{\infty} \sum_{i \in I_{h}} \varphi_{i}^{k}(x)
$$

which is a finite sum for each $x \in \Omega$.
THEN, $\left\{\frac{\varphi_{i}^{k}}{\sigma}\right\}_{i \in I_{h}, k \in \mathbb{N}}$ is the desired partition of unity.
\qquad
0

Remark: Let $K \subseteq \Omega$ be a copt subset. Then \exists at most finitely many $\alpha \in A$ sit. $\varphi_{\alpha}(x) \pm 0$. on K.

We now see how a partition of unity can be applied to integration theory by piecing together results obtained "locally".

Theorem: Let $\Omega \subseteq \mathbb{R}^{n}$ be a bod open subset with measure zero $\partial \Omega$, and $l_{l}=\left\{u_{i}\right\}_{i \in I}$ is a collection of open sets st. $\Omega=\bigcup_{i \in I} U_{i}$. Suppose $\left\{\varphi_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is a C^{∞} partition of unity for ll with compact support.

If $f: \Omega \rightarrow \mathbb{R}$ is a bod function which is cts except on a set of measure zero, then

$$
\int_{\Omega} f d V=\sum_{\alpha \in A} \int_{\Omega} \varphi_{\alpha} \cdot f d V
$$

Remark: The sum on the R.H.S. is a countably infinite sum by the previous remark. It is indeed an infinite series which is "absolutely convergent" (c.f. MATH 2068).

Proof: Let $\varepsilon>0$. We can choose a opt $K \subseteq \Omega$ s.t. ∂K has measure zero and
(Ex: Prove this!)

$$
\operatorname{Vol}(\Omega \backslash K)<\varepsilon .
$$

By the remark before the theorem. ヨ at most finitely many $\varphi_{1} \ldots . \varphi_{N}$ which does NOT vanish identically on K. On the other hand. by assumption $\exists M>0$ sit. $|f(x)| \leq M \quad \forall x \in \Omega$.

Then, we have

$$
\begin{aligned}
&\left|\int_{\Omega} f d V-\sum_{i=1}^{N} \int_{\Omega} \varphi_{i} \cdot f d V\right| \\
& \leqslant \int_{\Omega}\left|f-\sum_{i=1}^{N} \varphi_{i} \cdot f\right| d V \\
& \leqslant M \int_{\Omega}\left(1-\sum_{i=1}^{N} \varphi_{i}\right) d V \\
& \leqslant M \int_{\Omega \backslash K} 1 d V=M \operatorname{Vol}(\Omega \backslash K)<M \varepsilon
\end{aligned}
$$

Let εy o gives our desired result.

